海静中学开展以"我最喜爱的职业"为主题的调查活动,围绕"在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)"的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;
(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?
已知:如图,在中,D是AC上一点,联结BD,且∠ABD =∠ACB.
(1)求证:△ABD∽△ACB;
(2)若AD=5,AB= 7,求AC的长.
计算:
△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F .
(1)如图1,观察旋转过程,猜想线段AF与BE的数量关系并证明你的结论;
(2)如图2,若连接EF,试探索线段BE、EF、FC之间的数量关系,直接写出你的结论(不需证明);
(3)如图3,若将“AB=AC,点D是BC的中点”改为:“∠B=30°,AD⊥BC于点D”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF、BE的比值.
已知:抛物线经过点
.
(1)求的值;
(2)若,求这条抛物线的顶点坐标;
(3)若,过点
作直线
轴,交
轴于点
,交抛物线于另一点
,且
,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)
如图,四边形OABC是面积为4的正方形,函数的图象经过点B.
(1) 求k的值;
(2)将正方形OABC分别沿直线AB,BC翻折,得到正方形MABC′和NA′BC.设线段MC′,NA′分别与函数的图象交于点F,E. 求线段EF所在直线的解析式