已知二次函数
(1)当 时,求这个二次函数的顶点坐标;
(2)求证:关于x的一元二次方程
有两个不相等的实数根;
(3)如图,该二次函数与x轴交于A、B两点(A点在B点的左侧),与y轴交于C点,P是y轴负半轴上一点,且 ,直线AP交BC于点Q,求证: .
如图,在平面直角坐标系中,等腰直角
的斜边
在
轴上,顶点
的坐标为
,
为斜边上的高.抛物线
与直线
交于点
,点
的横坐标为
.点
在
轴的正半轴上,过点
作
轴.交射线
于点
.设点
的横坐标为
,以
为顶点的四边形的面积为
.
(1)求所在直线的解析式;
(2)求的值;
(3)当时,求
与
的函数关系式;
(4)如图,设直线
交射线
于点
,交抛物线于点
.以
为一边,在
的右侧作矩形
,其中
.直接写出矩形
与
重叠部分为轴对称图形时
的取值范围.
某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元. 设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
如图,△ABC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.
(1)求证:OF•DE=2OE•OH;
(2)若⊙O的半径为12,且OE:OF:OD=2:3:6,求阴影部分的面积.(结果保留根号)
如图,为正方形
边
上任一点,
于点
,在
的延长线上取点
,使
,连接
,
.
(1)求证:;
(2)的平分线交
于
点,连接
,求证:
;
如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD="60°." 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(不取近似值,用无理数表示)