解方程:.
我们知道,经过原点的抛物线解析式可以是。
(1)对于这样的抛物线:
当顶点坐标为(1,1)时,a=;
当顶点坐标为(m,m),m≠0时,a 与m之间的关系式是;
(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线上,请用含k的代数式表示b;
(3)现有一组过原点的抛物线,顶点A1,A2,…,An在直线上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,B3,…,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过点Dn,求所有满足条件的正方形边长。
如图,等腰梯形ABCD中,AD∥BC,∠B=450,P是BC边上一点,△PAD的面积为,设AB=x,AD=y。
(1)求y与x的函数关系式;
(2)若∠APD=450,当y=1时,求PB·PC的值;
(3)若∠APD=900,求y的最小值。
如图,△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=。
(1)求证:BC是⊙O的切线;
(2)求的长。
如图,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转对称都可以得到△OBD。
(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△OBD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是度;
(2)连接AD,交OC于点E,求∠AEO的度数。