如图,在 中,已知 .
(1)实践与操作:作 的平分线交 于点 ,在 上截取 ,连接 ;(要求:尺规作图,保留作图痕迹,不写作法)
(2)猜想并证明:猜想四边形 的形状,并给予证明.
为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目。为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调査结果绘制成如图①、②的统计图.请结合图中的信息解答下列问题:
(1)在这项调査中,共调査了多少名学生?
(2)请将两个统计图补充完整;
(3)若调査到喜欢“跳绳”的5名学生中有3名男,2名女生.现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
|
某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).
(1)求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
如图,Rt△ABC的斜边BC=8,AC=6。
(1)用尺规作图作AB的垂直平分线l,垂足为D(保留作图痕迹,不要求写作法、证明)
(2)连结C、D两点,求CD的长度。
如图,一次函数y=x+6与反比例函数的图象相交于A,B两点,与x轴、y轴交于E、F,点B的横坐标为
。
(1)试确定反比例函数的解析式;
(2)求点E、F的坐标。
如图所示,在平面直角坐标系中,抛物线经过
、
、
三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).经过点P作y轴的垂线,重足为E,连接AE.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量的取值范围,并求S的最大值;
(3)在(2)的条件下,当S取到最大值时,过点P作轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点
,求出
的坐标,并判断
是否在该抛物线上.