如图,抛物线 交 轴于 , 两点,与 轴交于点 ,连接 , .点 是第一象限内抛物线上的一个动点,点 的横坐标为 .
(1)求此抛物线的表达式;
(2)过点 作 轴,垂足为点 , 交 于点 .试探究点 在运动过程中,是否存在这样的点 ,使得以 , , 为顶点的三角形是等腰三角形.若存在,请求出此时点 的坐标,若不存在,请说明理由;
(3)过点 作 ,垂足为点 .请用含 的代数式表示线段 的长,并求出当 为何值时 有最大值,最大值是多少?
某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度.
(1)在确定调查方式时,团委设计了以下三种方案:
方案一:调查七年级部分女生;
方案二:调查七年级部分男生;
方案三:到七年级每个班去随机调查一定数量的学生.
请问其中最具有代表性的一个方案是______________;
(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示)请你根据图中信息,将其补充完整;
(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.
直线AB、CD相交于点O,OE平分∠AOD,∠FOC=100°,∠1=35°,求∠2与∠3的度数。
解下列方程(组):(1);(2)
,其中
计算:(1)-3+12+(-16)-(-13);(2)÷