如图,在平面直角坐标系中, ΔABC 为等腰直角三角形, ∠ ACB = 90 ° ,抛物线 y = − x 2 + bx + c 经过 A , B 两点,其中点 A , C 的坐标分别为 ( 1 , 0 ) , ( − 4 , 0 ) ,抛物线的顶点为点 D .
(1)求抛物线的解析式;
(2)点 E 是直角三角形 ABC 斜边 AB 上的一个动点(不与 A , B 重合),过点 E 作 x 轴的垂线,交抛物线于点 F ,当线段 FE 的长度最大时,求点 E 的坐标;
(3)在(2)的条件下,抛物线上是否存在一点 P ,使 ΔPEF 是以 EF 为直角边的直角三角形?若存在,求出所有点 P 的坐标;若不存在,请说明理由.
先化简,再求值:,其中.
计算:.
如图:已知:E是∠AOB的平分线上的一点,ED⊥OB, EC⊥OA, D、C是垂足,连接CD,求证:(1)∠ECD=∠EDC;(2)OD=OC;(3)OE是CD的中垂线。
如图,某船在上午11点30分在A处观测岛B在东偏北30o,该船以10海里/时的速度向东航行到C处,再观测海岛在东偏北60o,且船距海岛40海里. (1)求船到达C点的时间; (2)若该船从C点继续向东航行,何时到达B岛正南的D处?
已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠D,CF∥DE,求证:AC∥BD。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号