某商店计划购进甲、乙两种笔记本,已知2本甲笔记本与3本乙笔记本的总进价为42元,2本甲笔记本与1本乙笔记本的总进价为22元.
(1)求甲、乙两种笔记本的进价分别是多少元?
(2)该商店计划购进两种笔记本共40本,其中甲笔记本的数量不超过乙笔记本的数量,且总金额不超过330元,求共有几种进货方案,并指出哪种方案最省钱.
已知二次函数中,函数
与自变量
的部分对应值如下表:
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
(1)求该二次函数的关系式;(2)当
为何值时,
有最小值,最小值是多少?
(3)若,
两点都在该函数的图象上,试比较
与
的大小.
已知:o为坐标原点,∠ AOB=300 , ∠ABO=900且A(2,0)求:过A、B、O三点的二次函数解析式
已知如图,二次函数y="ax2" +bx+c的图像过A、B、C三点
观察图像写出A、B、C三点的坐标
求出二次函数的解析式
已知二次函的图象过点(0, 5)
⑴ 求m的值,并写出二次函数的关系式;
⑵ 求出二次函数图象的顶点坐标、对称轴.
已知二次函数y=-x2 –x+4回答下列问题
(1)用配方法将其化成y="a" (x-h)2+k的形式
(2)指出抛物线的顶点坐标和对称轴
(3)当x取何值时,y随x增大而增大;
当x取何值时,y随x增大而减小?