如图, AB 是 ⊙ O 的直径,弦 CD ⊥ AB 于点 E ,点 F 是 ⊙ O 上一点,且 AC ̂ = CF ̂ ,连接 FB , FD , FD 交 AB 于点 N .
(1)若 AE = 1 , CD = 6 ,求 ⊙ O 的半径;
(2)求证: ΔBNF 为等腰三角形;
(3)连接 FC 并延长,交 BA 的延长线于点 P ,过点 D 作 ⊙ O 的切线,交 BA 的延长线于点 M .求证: ON · OP = OE · OM .
先化简,再求值:,其中a是方程的一个根。
计算:-(cos30°-1) 0-82×0.1252.
如图,抛物线与轴交于两点,与轴交于点. (1)请求出抛物线顶点的坐标(用含的代数式表示),两点的坐标; (2)经探究可知,与的面积比不变,试求出这个比值; (3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
如图,已知BC是⊙O的直径,AH⊥BC,垂足为D,点A为弧EF的中点,BF交AD于点E,且BE·EF=32,AD=6. (1)求证:AE=BE; (2)求DE的长; (3)求BD的长 .
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号