(1)阅读理解:
如图①,在 中,若 , ,求 边上的中线 的取值范围.
解决此问题可以用如下方法:延长 到点 使 ,再连接 (或将 绕着点 逆时针旋转 得到 ,把 、 , 集中在 中,利用三角形三边的关系即可判断.
中线 的取值范围是 ;
(2)问题解决:
如图②,在 中, 是 边上的中点, 于点 , 交 于点 , 交 于点 ,连接 ,求证: ;
(3)问题拓展:
如图③,在四边形 中, , , ,以 为顶点作一个 角,角的两边分别交 , 于 、 两点,连接 ,探索线段 , , 之间的数量关系,并加以证明.
如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.直线BF垂直于直线CE于点F,交CD于点G.求证:AE=CG.
学习了统计知识后,小明就本班同学喜欢的体育 运动项目进行调查统计,如图是他通过收集数据绘制的两幅不完整的统计图.
(1)该班共有多少名学生;
(2)该班喜欢乒乓球的学生有多少名,并将条形统计图补充完整;
(3)若小明所在的年级共有500名学生,估计该年级喜欢乒乓球的学生多少名;
(4)在全班同学中随机选出一名学生,选出的学生恰好是喜欢篮球项目的概率是多少.
如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.
(1)在图1中,画出△ABC的三条高的交点;
(2)在图2中,画出△ABC中AB边上的高.(不必写出作图过程,但必须保留作图痕迹)
有一人患了流感,经过两轮传染后共有64人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
解不等式组:,并把它的解集在数轴上表示出来.