如图,直线 交 轴于点 ,交 轴于点 ,过 , 两点的二次函数 的图象交 轴于另一点 .
(1)求二次函数的表达式;
(2)连接 ,点 是线段 上的动点,作 轴交二次函数的图象于点 ,求线段 长度的最大值;
(3)若点 为二次函数 图象的顶点,点 是该二次函数图象上一点,在 轴、 轴上分别找点 , ,使四边形 的周长最小,求出点 , 的坐标.
温馨提示:在直角坐标系中,若点 , 的坐标分别为 , , , ,
当 平行 轴时,线段 的长度可由公式 求出;
当 平行 轴时,线段 的长度可由公式 求出.
已知是⊙
的直径,
是⊙
的切线,
是切点,
与⊙
交于点
.
(1)如图①,若,
,求
的长(结果保留根号);
(2)如图②,若为
的中点,求证:直线
是⊙
的切线.
(1)用配方法把二次函数化为顶点式,并在直角坐标系中画出它的大致图象(
).
(2)若是函数
图象上的两点,且
,请比较
的大小关系.(直接写结果)
(3)把方程的根在函数
的图象上表示出来.
在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).
(1)如果建立直角坐标系,使点B的坐标为(-5,2),点C的坐标为(-2,2),则点A的坐标为;
(2)画出△ABC绕点O顺时针旋转90°后的△A1B1C1,并求线段BC扫过的面积.
在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.
四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F.请你猜想DE与DF的大小有什么关系?并证明你的猜想.