游客
题文

如图,直线 y = 5 x + 5 x 轴于点 A ,交 y 轴于点 C ,过 A C 两点的二次函数 y = a x 2 + 4 x + c 的图象交 x 轴于另一点 B

(1)求二次函数的表达式;

(2)连接 BC ,点 N 是线段 BC 上的动点,作 ND x 轴交二次函数的图象于点 D ,求线段 ND 长度的最大值;

(3)若点 H 为二次函数 y = a x 2 + 4 x + c 图象的顶点,点 M ( 4 , m ) 是该二次函数图象上一点,在 x 轴、 y 轴上分别找点 F E ,使四边形 HEFM 的周长最小,求出点 F E 的坐标.

温馨提示:在直角坐标系中,若点 P Q 的坐标分别为 P ( x 1 y 1 ) Q ( x 2 y 2 )

PQ 平行 x 轴时,线段 PQ 的长度可由公式 PQ = | x 1 x 2 | 求出;

PQ 平行 y 轴时,线段 PQ 的长度可由公式 PQ = | y 1 y 2 | 求出.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

已知是⊙的直径,是⊙的切线,是切点,与⊙交于点.

(1)如图①,若,求的长(结果保留根号);
(2)如图②,若的中点,求证:直线是⊙的切线.

(1)用配方法把二次函数化为顶点式,并在直角坐标系中画出它的大致图象().
(2)若是函数图象上的两点,且,请比较的大小关系.(直接写结果)
(3)把方程的根在函数的图象上表示出来.

在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).

(1)如果建立直角坐标系,使点B的坐标为(-5,2),点C的坐标为(-2,2),则点A的坐标为
(2)画出△ABC绕点O顺时针旋转90°后的△A1B1C1,并求线段BC扫过的面积.

在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.

四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F.请你猜想DE与DF的大小有什么关系?并证明你的猜想.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号