随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有 、 、 、 、 等著名景点,该市旅游部门统计绘制出2017年“五 一”长假期间旅游情况统计图,根据以下信息解答下列问题:
(1)2017年“五 一”期间,该市周边景点共接待游客 万人,扇形统计图中 景点所对应的圆心角的度数是 ,并补全条形统计图.
(2)根据近几年到该市旅游人数增长趋势,预计2018年“五 一”节将有80万游客选择该市旅游,请估计有多少万人会选择去 景点旅游?
(3)甲、乙两个旅行团在 、 、 三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.
为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:
(1)此次共调查了多少名同学?
(2)将条形统计图补充完整,并计算扇形统计图中书法部分的圆心角的度数;
(3)如果该校共有名学生参加这
个课外兴趣小组,面每位教师最多只能辅导本组的
名学生,估计每个兴趣小组至少需要准备多少名教师.
张师傅根据某直三棱柱零件,按1:1的比例画出准确的三视图如下:已知△EFG中,EF="4" cm,∠EFG=45°,FG="10" cm,AD="12" cm.(1)求AB的长;(2)直接写出这个直三棱柱的体积.
如图1,抛物线与x轴交于B(3,0) 、C(8.0)两点,抛物线另有一点A在第一象限内,连接AO、AC,且AO=AC.
求抛物线的解析式;
将△OAC绕x轴旋转一周,求所得旋转体的表面积;
如图2,将△OAC沿x轴翻折后得△ODC,设垂直于x轴的直线l:x=n与(1)中所求的抛物线交于点M,与CD交于点N,若直线l 沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD。如图1,以AB为边在△ABC外作等腰△ABE,其中AB=AE,,试证明BD=CE;
如图2,若∠ABC=30°,△ACD是等边三角形,AB=3,BC=4,求BD的长;
如图3,若∠ACB为锐角,作AH⊥BC于H,当BD2=4AH2+BC2时,问∠DAC与∠ABC有怎样的关系,直接写出结论(不需要证明)。
现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为0.6万元,使用B型车厢每节费用为0.8万元.设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;
如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
在上述方案中,哪个方案运费最省?最少运费为多少元?