图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的 点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.
(1)随机掷一次骰子,则棋子跳动到点 处的概率是
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点 处的概率.
已知四边形 内接于 ,对角线 是 的直径.
(1)如图1,连接 ,若 ,求证: 平分 ;
(2)如图2, 为 内一点,满足 .若 , ,求弦 的长.
如图, 是同一水平线上的两点,无人机从 点竖直上升到 点时,测得 到 点的距离为 , 点的俯角为 ,无人机继续竖直上升到 点,测得 点的俯角为 .求无人机从 点到 点的上升高度 (精确到 ).
参考数据: .
【观察思考】
【规律发现】
请用含 的式子填空:
(1)第 个图案中“◎”的个数为_____;
(2)第1个图案中“★”的个数可表示为 ,第 个图案中“★”的个数可表示为 ,第 个图案中“★”的个数可表示为 ,第 个图案中“★”的个数可表示为 ,……,第 个图案中“★”的个数可表示为_____.
【规律应用】
(3)结合图案中“★”的排列方式及上述规律,求正整数 ,使得连续的正整数之和 等于第 个图案中“◎”的个数的 倍.
根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨 ,乙地降价 元.已知销售单价调整前甲地比乙地少 元,调整后甲地比乙地少 元,求调整前甲、乙两地该商品的销售单价.
先化简,再求值: ,其中 .