游客
题文

如图1, ΔABC 是边长为 4 cm 的等边三角形,边 AB 在射线 OM 上,且 OA = 6 cm ,点 D O 点出发,沿 OM 的方向以 1 cm / s 的速度运动,当 D 不与点 A 重合时,将 ΔACD 绕点 C 逆时针方向旋转 60 ° 得到 ΔBCE ,连接 DE

(1)求证: ΔCDE 是等边三角形;

(2)如图2,当 6 < t < 10 时, ΔBDE 的周长是否存在最小值?若存在,求出 ΔBDE 的最小周长;若不存在,请说明理由;

(3)如图3,当点 D 在射线 OM 上运动时,是否存在以 D E B 为顶点的三角形是直角三角形?若存在,求出此时 t 的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 旋转的性质 等边三角形的判定与性质 直角三角形的性质
登录免费查看答案和解析
相关试题

代数式的值可以为0吗?为什么?

选用适当的方法解下列方程(每小题4分,共12分):
(1)
(2)
(3)

如图,在平面直角坐标系中,点A的坐标为(3,0),直线l与x轴正半轴夹角为30°,点B为直线l上的一个动点,延长AB至点C,使得AB=BC,过点C作CD⊥x轴于点D,交直线l于点F,过点A作AE∥l交直线CD于点E.

(1)若点B的横坐标为6,则点C的坐标为(______,_____),DE的长为
(2)若点B的横坐标大于3,则线段CF的长度是否发生改变?若不变,请求出线段CF的长度;若改变,请说明理由;
(3)连结BE,在点B的运动过程中,以OB为直径的⊙P与△ABE某一边所在的直线相切,请求出所有满足条件的DE的长.

某超市销售一种饮料,每瓶进价为4元.经市场调查表明,当售价在5元到8元之间(含5元,8元)浮动时,每瓶售价每增加1元,日均销售量减少40瓶;当售价为每瓶为6元时,日均销售量为120瓶.问:销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?

已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C.D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.

(1)若⊙O的半径为8,求CD的长;
(2)证明:PE=PF;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号