如图,已知抛物线 y = a x 2 + bx + 1 经过 A ( − 1 , 0 ) , B ( 1 , 1 ) 两点.
(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线 l 1 : y = k 1 x + b 1 ( k 1 , b 1 为常数,且 k 1 ≠ 0 ) ,直线 l 2 : y = k 2 x + b 2 ( k 2 , b 2 为常数,且 k 2 ≠ 0 ) ,若 l 1 ⊥ l 2 ,则 k 1 · k 2 = − 1 .
解决问题:
①若直线 y = 3 x − 1 与直线 y = mx + 2 互相垂直,求 m 的值;
②抛物线上是否存在点 P ,使得 ΔPAB 是以 AB 为直角边的直角三角形?若存在,请求出点 P 的坐标;若不存在,请说明理由;
(3) M 是抛物线上一动点,且在直线 AB 的上方(不与 A , B 重合),求点 M 到直线 AB 的距离的最大值.
关于x的一元二次方程有两个不相等的实数根. (1)求k的取值范围. (2)如果k=-2,求出方程的根.
我县华联超市服装柜台在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元,为了迎接“元旦”佳节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装最多可降价多少?
解下列方程:(1)(x-1)(x+2)=2(x+2) (2)3x2-9x+2=0 (3) (4)
计算:5+-6×
计算:(1)2+-4
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号