如图1,已知抛物线 与 轴交于 , 两点,与 轴交于 点,点 是抛物线上在第一象限内的一个动点,且点 的横坐标为 .
(1)求抛物线的表达式;
(2)设抛物线的对称轴为 , 与 轴的交点为 .在直线 上是否存在点 ,使得四边形 是平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
(3)如图2,连接 , , ,设 的面积为 .
①求 关于 的函数表达式;
②求 点到直线 的距离的最大值,并求出此时点 的坐标.
阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
夏季来临,天气逐渐炎热起来.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%.已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?
已知三角形的周长为3a+2b,其中第一条边长为a+b,第二条边长比第一条边长小1,求第三边的边长.
一振子从点A开始左右振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,-9,+8,-6,+7.5,-6,+8,-7.
(1)求振子停止时所在位置距A点有多远?
(2)如果每毫米需时0.22秒,则共用时多少秒?
一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:
(1)“?”处的数字是什么?
(2)每两个相对面上的数字分别是什么?