游客
题文

如图1,在矩形 ABCD 中, E AD 的中点,以点 E 为直角顶点的直角三角形 EFG 的两边 EF EG 分别过点 B C F = 30 °

(1)求证: BE = CE

(2)将 ΔEFG 绕点 E 按顺时针方向旋转,当旋转到 EF AD 重合时停止转动,若 EF EG 分别与 AB BC 相交于点 M N (如图 2 )

①求证: ΔBEM ΔCEN

②若 AB = 2 ,求 ΔBMN 面积的最大值;

③当旋转停止时,点 B 恰好在 FG 上(如图 3 ) ,求 sin EBG 的值.

科目 数学   题型 解答题   难度 中等
知识点: 旋转的性质 矩形的性质 全等三角形的判定与性质 二次函数的应用 四边形综合题 等腰直角三角形
登录免费查看答案和解析
相关试题

解方程
(1)
(2)

如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连结PC,过点P作PE⊥PC交AB于E.

(1)证明△PAE∽△CDP;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,设AP=x,BE=y,求y与x的函数关系式及y的取值范围;
(3)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由.

如图,P1是反比例函数在第一象限图象上的一点,已知△P1O A1为等边三角形,点A1的坐标为(2,0).

(1)直接写出点P1的坐标;
(2)求此反比例函数的解析式;
(3)若△P2A1A2为等边三角形,求点A2的坐标.

某市为落实房地产调控政策,加快了廉租房的建设力度.第一年投资2亿元人民币建设了廉租房8万平方米,累计连续三年共投资9.5亿元人民币建设廉租房.设每年投资的增长率均为
(1)求每年投资的增长率;
(2)若每年建设成本不变,求第三年建设了多少万平方米廉租房.

如图,在平面直角坐标系中,△ABC和△是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).

(1)请你根据位似的特征并结合点B的坐标变化回答下列问题: ①若点A(,3),则A′的坐标为;②△ABC与△的相似比为
(2)若△ABC的面积为m,求△A′B′C′的面积.(用含m的代数式表示)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号