已知抛物线 的图象经过坐标原点 ,且与 轴另一交点为 , .
(1) 求抛物线 的解析式;
(2) 如图 1 ,直线 与抛物线 相交于点 , 和点 , (点 在第二象限) ,求 的值 (用 含 的式子表示) ;
(3) 在 (2) 中, 若 ,设点 是点 关于原点 的对称点, 如图 2 .
①判断△ 的形状, 并说明理由;
②平面内是否存在点 ,使得以点 、 、 、 为顶点的四边形是菱形?若存在, 求出点 的坐标;若不存在, 请说明理由 .
画图:
(1)如图,已知△ABC和点O.将△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1;
(2)如图,AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺(只能画线)按要求画图.
(ⅰ)在图1中,画出△ABC的三条高的交点;
(ⅱ)在图2中,画出△ABC中AB边上的高.
二次函数的图象与x轴交于点A(-1, 0),与y轴交于点C(0,-5),且经过点D(3,-8).
(1)求此二次函数的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.
如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,求DE∶EC的值.
如图,△ABC和△A’B’C’是两个完全重合的直角三角板,∠B=∠B’=30º,斜边长为10cm.三角形板A’B’C’绕直角顶点C顺时针旋转,当点A'落在AB边上时,求C’A’旋转所构成的扇形的弧长.
解方程:x2-10x+9=0.