游客
题文

已知抛物线 F : y = x 2 + bx + c 的图象经过坐标原点 O ,且与 x 轴另一交点为 ( 3 3 0 )

(1) 求抛物线 F 的解析式;

(2) 如图 1 ,直线 l : y = 3 3 x + m ( m > 0 ) 与抛物线 F 相交于点 A ( x 1 y 1 ) 和点 B ( x 2 y 2 ) (点 A 在第二象限) ,求 y 2 y 1 的值 (用 含 m 的式子表示) ;

(3) 在 (2) 中, 若 m = 4 3 ,设点 A ' 是点 A 关于原点 O 的对称点, 如图 2 .

①判断△ AA ' B 的形状, 并说明理由;

②平面内是否存在点 P ,使得以点 A B A ' P 为顶点的四边形是菱形?若存在, 求出点 P 的坐标;若不存在, 请说明理由 .

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

画图:
(1)如图,已知△ABC和点O.将△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1

(2)如图,AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺(只能画线)按要求画图.
(ⅰ)在图1中,画出△ABC的三条高的交点;

(ⅱ)在图2中,画出△ABC中AB边上的高.

二次函数的图象与x轴交于点A(-1, 0),与y轴交于点C(0,-5),且经过点D(3,-8).
(1)求此二次函数的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.

如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,SDEF∶SABF=4∶25,求DE∶EC的值.

如图,△ABC和△A’B’C’是两个完全重合的直角三角板,∠B=∠B’=30º,斜边长为10cm.三角形板A’B’C’绕直角顶点C顺时针旋转,当点A'落在AB边上时,求C’A’旋转所构成的扇形的弧长

解方程:x2-10x+9=0.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号