游客
题文

我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.

(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有  

②在凸四边形 ABCD 中, AB = AD CB CD ,则该四边形  “十字形”.(填“是”或“不是” )

(2)如图1, A B C D 是半径为1的 O 上按逆时针方向排列的四个动点, AC BD 交于点 E ADB CDB = ABD CBD ,当 6 A C 2 + B D 2 7 时,求 OE 的取值范围;

(3)如图2,在平面直角坐标系 xOy 中,抛物线 y = a x 2 + bx + c ( a b c 为常数, a > 0 c < 0 ) x 轴交于 A C 两点(点 A 在点 C 的左侧), B 是抛物线与 y 轴的交点,点 D 的坐标为 ( 0 , ac ) ,记“十字形” ABCD 的面积为 S ,记 ΔAOB ΔCOD ΔAOD ΔBOC 的面积分别为 S 1 S 2 S 3 S 4 .求同时满足下列三个条件的抛物线的解析式;

S = S 1 + S 2 ;② S = S 3 + S 4 ;③“十字形” ABCD 的周长为 12 10

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 二次函数综合题
登录免费查看答案和解析
相关试题

(本题5分)已知等腰△ABC的一条边长a=2,另两边的长b、c恰好是关于x的一元二次方程x2-(k+3)x + 3k=0的两个根,求△ABC的周长.

解方程(每小题3分,共6分)
(1)(x―2)2―9=0;
(2)2x2+3x―1=0.

某农机厂四月份生产零件50万个,第二季度共生产零件182万个,设该厂五、六月份平均每月的增长率为,则满足的方程是()

A.
B.
C.
D.

行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:

刹车时车速/km·h-1
0
10
20
30
40
50
60
刹车距离/m
0
0.3
1.0
2.1
3.6
5.5
7.8


(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;
(2)观察图象.估计函数的类型,并确定一个满足这些数据的函数解析式;
(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5 m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?

如图,菱形ABCD中,AC,BD交于O,AC=8m,BD=6m,动点M从A出发沿AC方向以2m/s匀速直线运动到C,动点N从B出发沿BD方向以1m/s匀速直线运动到D,若M,N同时出发,问出发后几秒钟时,△MON的面积为

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号