某公司设计了一款产品,每件成本是50元,在试销期间,据市场调查,销售单价是60元时,每天的销量是250件,而销售单价每增加1元,每天会少售出5件,公司决定销售单价 (元 不低于60元,而市场要求 不得超过100元.
(1)求出每天的销售量 (件 与销售单价 (元 之间的函数关系式,并写出 的取值范围;
(2)求出每天的销售利润 (元 与销售单价 (元 之间的函数关系式,并求出当 为多少时,每天的销售利润最大,并求出最大值;
(3)若该公司要求每天的销售利润不低于4000元,但每天的总成本不超过6250元,则销售单价 最低可定为多少元?
求值:(2+1)•(22+1)•(24+1)•(28+1)•(216+1)﹣232.
利用平方差公式计算99992.
利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的《从面积到乘法公式》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?
如图,一个边长为1的正方形,依次取正方形的,根据图示我们可以知道:第一次取走
后还剩
,即
=1﹣
;前两次取走
+
后还剩
,即
+
=1﹣
;前三次取走
+
+
后还剩
,即
+
+
=1﹣
;…前n次取走后,还剩 _________ ,即 _________ = _________ .
利用上述计算:
(1)= _________ .
(2)= _________ .
(3)2﹣22﹣23﹣24﹣25﹣26﹣…﹣22011+22012(本题写出解题过程)
“*”是规定的一种运算法则:a*b=a2﹣b.
①求5*(﹣1)的值;
②若3*x=2,求x的值;
③若(﹣4)*x=2+x,求x的值.
大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x(x+y)=2x2+2xy就可以用图的面积表示.
(1)请写出图(2)所表示的代数恒等式: _______ ;
(2)请写出图(3)所表示的代数恒等式: ________ ;
(3)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2.