如图,在 中, , , 于点 .
(1)如图1,点 , 在 , 上,且 .求证: ;
(2)点 , 分别在直线 , 上,且 .
①如图2,当点 在 的延长线上时,求证: ;
②当点 在点 , 之间,且 时,已知 ,直接写出线段 的长.
计算: .
在篮球比赛中,东东投出的球在点 处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点 .
(1)求该抛物线的函数表达式.
(2)当球运动到点 时被东东抢到, 轴于点 , .
①求 的长.
②东东抢到球后,因遭对方防守无法投篮,他在点 处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点 .东东起跳后所持球离地面高度 (传球前)与东东起跳后时间 满足函数关系式 ;小戴在点 处拦截,他比东东晚 垂直起跳,其拦截高度 与东东起跳后时间 的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点 ?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).
在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 和 拼在一起,使点 与点 重合,点 与点 重合(如图 ,其中 , , ,并进行如下研究活动.
活动一:将图1中的纸片 沿 方向平移,连结 , (如图 ,当点 与点 重合时停止平移.
[思考]图2中的四边形 是平行四边形吗?请说明理由.
[发现]当纸片 平移到某一位置时,小兵发现四边形 为矩形(如图 .求 的长.
活动二:在图3中,取 的中点 ,再将纸片 绕点 顺时针方向旋转 度 ,连结 , (如图 .
[探究]当 平分 时,探究 与 的数量关系,并说明理由.
为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点 处测得河北岸的树 恰好在 的正北方向.测量方案与数据如下表:
课题 |
测量河流宽度 |
||
测量工具 |
测量角度的仪器,皮尺等 |
||
测量小组 |
第一小组 |
第二小组 |
第三小组 |
测量方案示意图 |
|
|
|
说明 |
点 , 在点 的正东方向 |
点 , 在点 的正东方向 |
点 在点 的正东方向,点 在点 的正西方向. |
测量数据 |
, , . |
, , . |
, , . |
(1)哪个小组的数据无法计算出河宽?
(2)请选择其中一个方案及其数据求出河宽(精确到 .(参考数据: , , ,
小吴家准备购买一台电视机,小吴将收集到的某地区 、 、 三种品牌电视机销售情况的有关数据统计如下:
根据上述三个统计图,请答案:
(1) 年三种品牌电视机销售总量最多的是 品牌,月平均销售量最稳定的是 品牌.
(2)2019年其他品牌的电视机年销售总量是多少万台?
(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.