游客
题文

为迎接“七 · 一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.

(1)求每辆大客车和每辆小客车的座位数;

(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?

科目 数学   题型 解答题   难度 中等
知识点: 一元一次不等式的应用 二元一次方程组的应用
登录免费查看答案和解析
相关试题

请用直尺和圆规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上,面积相同的图形视为同一种.(保留作图痕迹).

如图,已知直线过点轴正半轴上的动点,的垂直平分线交于点,交轴于点
(1)直接写出直线的解析式;
(2)当时,设的面积为,求S关于t的函数关系式;并求出S的最大值;
(3)当点Q在线段AB上(Q与A、B不重合)时,直线过点A且与x轴平行,问在上是否存在点C,使得是以为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销.商场又用68000元购进第二批这种运动服,所够数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该商场两次共购进这种牌运动服多少套?
(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(

已知:如图,⊙O是△ABC的外接圆,AB为⊙O直径,且PA⊥AB于点A,PO⊥AC于点M.
(1)求证:是⊙的切线;
(2)当时,求PC的长.

如图,在□ABCD中,E、F分别是AB、CD的中点,连接AF、CE.
(1)求证:△BEC≌△DFA;
(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号