游客
题文

在创建“文明校园”活动中,某校有2名男生和3名女生被评为学校“文明学生”.现要从这5名学生中选拔“学校文明礼仪值周岗”的值周生.

(1)从这5名学生中随机选拔1人值周,恰好选到男生的概率是  

(2)从这5名学生中随机选拔2人值周,请用树状图或列表法求出恰好选到1个男生和1个女生的概率.

科目 数学   题型 解答题   难度 中等
知识点: 概率公式 列表法与树状图法
登录免费查看答案和解析
相关试题

如图,直线AB分别交y轴、x 轴于A、B两点,OA=2,,抛物线过A、B两点.

(1)求直线AB和这个抛物线的解析式;
(2)设抛物线的顶点为D,求△ABD的面积
(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,MN的长度l有最大值?最大值是多少?

如图,梯形ABCD中,AD//BC,E为CD边的中点,F为AD延长线上一点,且满足DF+BF=BC.

(1)若∠A=90º,AD=3,AB=5,BC=9,求BE的长;
(2)求证:BE平分∠FBC.

为奖励“我的中国梦”暑期系列实践活动的获奖学生,学校准备在某商店购买A,B两种文具作为奖品,已知一件A种文具的单价比B种文具的单价便宜4元,而用300元买A种文具的件数是用200元买B种文具的件数的2倍.
(1)求A种文具的单价;
(2)根据需要,学校准备在该商店购买A,B两种文具共200件,其中A种文具的件数不多于B种文具件数的3倍.为了节约经费,应购买A,B两种文具各多少件?使用经费最少为多少元?

已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标,并求出此时的周长;
(3)在直线l上是否存在点M,使△MAC为直角三角形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.

锐角△ABC中,BC=6,,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0).

(1)求△ABC中边BC上高AD;
(2)当x为何值时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号