游客
题文

如图,一次函数 y = k 1 x + b 的图象与 x 轴、 y 轴分别交于 A B 两点,与反比例函数 y = k 2 x 的图象分别交于 C D 两点,点 C ( 2 , 4 ) ,点 B 是线段 AC 的中点.

(1)求一次函数 y = k 1 x + b 与反比例函数 y = k 2 x 的解析式;

(2)求 ΔCOD 的面积;

(3)直接写出当 x 取什么值时, k 1 x + b < k 2 x

科目 数学   题型 解答题   难度 中等
知识点: 反比例函数的性质 反比例函数与一次函数的交点问题 反比例函数综合题
登录免费查看答案和解析
相关试题

(·辽宁本溪)如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)

(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是
(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).

如图,在平面直角坐标系中,抛物线轴交于两点,与轴交于点,且点的坐标为在这条抛物线上,且不与两点重合,过点轴的垂线与射线交于点,以为边作使在点的下方,且设线段的长度为,点的横坐标为

(1)求这条抛物线所对应的函数表达式;
(2)求之间的函数关系式;
(3)当的边轴平分时,求的值;
(4)以为边作等腰直角三角形,当时,直接写出点落在的边上时的值.

如图①,一次函数的图象与二次函数的图象相交于A,B两点,点A,B的横坐标分别为m,n(m<0,n>0).

(1)当m=﹣1,n=4时,k= ,b=
当m=﹣2,n=3时,k= ,b=
(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论;
(3)利用(2)中的结论,解答下列问题:如图②,直线AB与x轴,y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,ED.
①当m=﹣3,n>3时,求的值(用含n的代数式表示);
②当四边形AOED为菱形时,m与n满足的关系式为
当四边形AOED为正方形时,m= ,n=

两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).

(1)当点C落在边EF上时,x= cm;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.

如图①,半径为R,圆心角为n°的扇形面积是,由弧长l=,得=•R=lR.通过观察,我们发现S扇形=lR类似于S三角形=×底×高.
类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分交作扇环)的面积公式及其应用.

(1)设扇环的面积为S扇环的长为的长为,线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=×(上底+下底)×高,用含,h的代数式表示S扇环,并证明;
(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号