游客
题文

如图1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图2位置,刀片部分是四边形 ABCD ,其中 AD / / BC AB BC CD = 15 mm C = 53 ° ,刀鞘的边缘 MN / / PQ ,刀刃 BC 与刀鞘边缘 PQ 相交于点 O ,点 A 恰好落在刀鞘另一边缘 MN 上时, COP = 37 ° OC = 50 mm

(1)求刀片宽度 h

(2)若刀鞘宽度为 14 mm ,求刀刃 BC 的长度.(结果精确到 0 . 1 mm ) (参考数据: sin 37 ° 3 5 cos 37 ° 4 5 tan 37 ° 3 4 )

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形的应用
登录免费查看答案和解析
相关试题

先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.

如图,抛物线y=-x2+bx+c与直线交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F。

(1)求抛物线的解析式;
(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.
(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.

在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.

(1)当点O为AC中点时,
①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系(无需证明);
②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的猜想是否成立?若成立,请证明;若不成立,请说明理由;
(2)当点O不是AC中点时,如图3,三角板的两直角边分别交AB,BC于E、F两点,若,求的值.

如图,一次函数的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=的图象在第二象限交于点C,其中点A(2,0),点B是AC的中点.

(1)求点C的坐标;
(2)求一次函数的解析式.

我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号