游客
题文

如图,抛物线 y = a x 2 + bx + 4 y 轴于点 A ,并经过 B ( 4 , 4 ) C ( 6 , 0 ) 两点,点 D 的坐标为 ( 4 , 0 ) ,连接 AD AB BC ,点 E 从点 A 出发,以每秒 2 个单位长度的速度沿线段 AD 向点 D 运动,到达点 D 后,以每秒1个单位长度的速度沿射线 DC 运动,设点 E 的运动时间为 t 秒,过点 E AB 的垂线 EF 交直线 AB 于点 F ,以线段 EF 为斜边向右作等腰直角 ΔEFG

(1)求抛物线的解析式;

(2)当点 G 落在第一象限内的抛物线上时,求出 t 的值;

(3)设点 E 从点 A 出发时,点 E F G 都与点 A 重合,点 E 在运动过程中,当 ΔBCG 的面积为4时,直接写出相应的 t 值,并直接写出点 G 从出发到此时所经过的路径长.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

如图①,△ABC,∠ABC=,将△ABC绕点A顺时针旋转得△AB ¢C ¢,设旋转的角度是

(1)如图②,当= °(用含的代数式表示)时,点B ¢恰好落在CA的延长线上;
(2)如图③,连结BB ¢、CC ¢,CC ¢的延长线交斜边AB于点E,交BB ¢于点F.请写出图中两对相似三角形
(不含全等三角形)。

已知:如图,在△ABC中,AB=AC= 5,BC= 8,DE分别为BCAB边上一点,∠ADE=∠C

(1)求证:△BDE∽△CAD
(2)若CD=2,求BE的长。

对于抛物线
(1)它与x轴交点的坐标为,与y轴交点的坐标为
顶点坐标为
(2)在坐标系中利用描点法画出此抛物线;

(3)利用以上信息解答下列问题:若关于x的一元二次方程t为实数)在x的范围内有解,则t的取值范围是

某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件。
(1)求商场经营该商品原来一天可获利润多少元?
(2)若商场经营该商品一天要获得最大利润,则每件商品应降价多少元?

如图,在某建筑物AC上,挂着宣传条幅BC,小明站在点F处,看条幅顶端B,测得的仰角为,再往条幅方向前行20米到达点E处,看条幅顶端B,测得的仰角为,若小明的身高约1.7米,求宣传条幅BC的长(结果精确到1米)。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号