游客
题文

如图,在某建筑物AC上,挂着宣传条幅BC,小明站在点F处,看条幅顶端B,测得的仰角为,再往条幅方向前行20米到达点E处,看条幅顶端B,测得的仰角为,若小明的身高约1.7米,求宣传条幅BC的长(结果精确到1米)。

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

已知关于x的方程x2-(m+2)x+(2m-1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。

设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.
(1)反比例函数是闭区间[1,2014]上的“闭函数”吗?请判断并说明理由;
(2)若一次函数是闭区间[m,n]上的“闭函数”,求此函数的解析式;
(3)若二次函数是闭区间[a,b]上的“闭函数”,求实数a,b的值.

阅读理解:对于任意正实数a、b,∵()2≥0,∴a-2+b≥0,∴a+b≥2,只有当a=b时,等号成立.
结论:在a+b≥2(a、b均为正实数)中,若ab为定值p,则a+b≥2,只有当a=b时,a+b有最小值2.根据上述内容,回答下列问题:
(1)若m>0,只有当m= 时,m+有最小值
若m>0,只有当m= 时,2m+有最小值 .
(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=(x>0)相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.

我们新定义一种三角形:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.
(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A,B重合),D是半圆的中点,C,D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.

①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数.

时,试用代数和几何两种方法探究的大小关系。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号