如图,四边形 为一个矩形纸片, , ,动点 自 点出发沿 方向运动至 点后停止, 以直线 为轴翻折,点 落在点 的位置.设 ,△ 与原纸片重叠部分的面积为 .
(1)当 为何值时,直线 过点 ?
(2)当 为何值时,直线 过 的中点 ?
(3)求出 与 的函数表达式.
为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:
篮球 |
排球 |
|
进价(元 个) |
80 |
50 |
售价(元 个) |
105 |
70 |
(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?
(2)设商店所获利润为 (单位:元),购进篮球的个数为 (单位:个),请写出 与 之间的函数关系式(不要求写出 的取值范围);
(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?
某校为了推进学校均衡发展,计划再购进一批图书,丰富学生的课外阅读.为了解学生对课外阅读的需求情况,学校对学生所喜爱的读物:
.文学,
.艺术,
.科普,
.生活,
.其他,进行了随机抽样调查(规定每名学生只能选其中一类读物),并将调查结果绘制成以下不完整的统计图表.
(1) , ,请补全条形统计图;
(2)如果全校有2500名学生,请你估计全校有多少名学生喜爱科普读物;
(3)学校从喜爱科普读物的学生中选拔出2名男生和3名女生,并从中随机抽取2名学生参加科普知识竞赛,请你用树状图或列表法求出恰好抽到一名男生和一名女生的概率.
如图,若要在宽 为20米的城南大道两边安装路灯,路灯的灯臂 长2米,且与灯柱 成 角,路灯采用圆锥形灯罩,灯罩的轴线 与灯臂 垂直,当灯罩的轴线 通过公路路面的中心线时照明效果最好,此时,路灯的灯柱 高应该设计为多少米(结果保留根号)?
如图,在边长为1的正方形网格中建立平面直角坐标系,已知 三个顶点分别为 、 、 .
(1)画出 关于 轴对称的△ ;
(2)以原点 为位似中心,在 轴的上方画出△ ,使△ 与 位似,且位似比为2,并求出△ 的面积.
如右图,在 中, 、 分别是 、 延长线上的点,且 ,连接 交 、 于点 、 .求证: .