如图,抛物线 y = − x 2 + bx + c 的图象与 x 轴交于 A ( − 5 , 0 ) , B ( 1 , 0 ) 两点,与 y 轴交于点 C ,抛物线的对称轴与 x 轴交于点 D .
(1)求抛物线的函数表达式;
(2)如图1,点 E ( x , y ) 为抛物线上一点,且 − 5 < x < − 2 ,过点 E 作 EF / / x 轴,交抛物线的对称轴于点 F ,作 EH ⊥ x 轴于点 H ,得到矩形 EHDF ,求矩形 EHDF 周长的最大值;
(3)如图2,点 P 为抛物线对称轴上一点,是否存在点 P ,使以点 P , A , C 为顶点的三角形是直角三角形?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.
如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE. 求证:(1)、∠ACB=∠DBE; (2)、∠ACB=∠AFB.
解分式方程:.
已知2-x-2=0,求·(x-2)的值
化简下列分式 (1)、 (2)、
如图,在△ABC中,AB=AC,D,E分别是AC,AB上的点,且BC=BD,AD=DE=EB,∠A度数是
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号