如图,二次函数 的图象经过点 , , ,直线 与 轴交于点 , 为二次函数图象上任一点.
(1)求这个二次函数的解析式;
(2)若点 在直线 的上方,过 分别作 和 轴的垂线,交直线 于不同的两点 , 在 的左侧),求 周长的最大值;
(3)是否存在点 ,使得 是以 为直角边的直角三角形?如果存在,求点 的坐标;如果不存在,请说明理由.
解不等式组
计算:⑴(2)
解不等式, 并把解集在数轴上表示出来.
数学课上,张老师出示了问题:如图1,△ABC是等边三角形,点D是边BC的中点.,且DE交△ABC外角
的平分线CE于点E,求证:AD=DE.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接MD,则△BMD是等边三角形,易证△AMD≌△DCE,所以AD=DE.在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点D是边BC的中点”改为“点D是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AD=DE”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小亮提出:如图3,点D是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AD=DE”仍然成立.你认为小华的观点(填“正确”或“不正确”).
小张骑车往返于甲、乙两地,距甲地的路程(千米)与时间
(小时)的函数图象如图所示.
(1)小张在路上停留 小时,他从乙地返回时骑车的速度为 千米/时.
(2)小王与小张同时出发,按相同路线前往乙地,距甲地的路程(千米)与时间
(小时)的函数关系式为
.小王与小张在途中共相遇几次?请你计算第一次相遇的时间.