游客
题文

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c 的顶点坐标为 ( 2 , 9 ) ,与 y 轴交于点 A ( 0 , 5 ) ,与 x 轴交于点 E B

(1)求二次函数 y = a x 2 + bx + c 的表达式;

(2)过点 A AC 平行于 x 轴,交抛物线于点 C ,点 P 为抛物线上的一点(点 P AC 上方),作 PD 平行于 y 轴交 AB 于点 D ,问当点 P 在何位置时,四边形 APCD 的面积最大?并求出最大面积;

(3)若点 M 在抛物线上,点 N 在其对称轴上,使得以 A E N M 为顶点的四边形是平行四边形,且 AE 为其一边,求点 M N 的坐标.

科目 数学   题型 计算题   难度 中等
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

化简: 5 a + 3 b a 2 - b 2 - 2 a a 2 - b 2

已知点 A ( - 1 , 1 ) B ( 4 , 6 ) 在抛物线 y = a x 2 + bx 上,

(1)求抛物线的解析式;

(2)如图1,点 F 的坐标为 ( 0 m ) ( m > 2 ) ,直线 AF 交抛物线于另一点 G ,过点 G x 轴的垂线,垂足为 H .设抛物线与 x 轴的正半轴交于点 E ,连接 FH AE ,求证: FH / / AE

(3)如图2,直线 AB 分别交 x 轴、 y 轴于 C D 两点.点 P 从点 C 出发,沿射线 CD 方向匀速运动,速度为每秒 2 个单位长度;同时点 Q 从原点 O 出发,沿 x 轴正方向匀速运动,速度为每秒1个单位长度.点 M 是直线 PQ 与抛物线的一个交点,当运动到 t 秒时, QM = 2 PM ,直接写出 t 的值.

已知四边形 ABCD 的一组对边 AD BC 的延长线交于点 E

(1)如图1,若 ABC = ADC = 90 ° ,求证: ED EA = EC EB

(2)如图2,若 ABC = 120 ° cos ADC = 3 5 CD = 5 AB = 12 ΔCDE 的面积为6,求四边形 ABCD 的面积;

(3)如图3,另一组对边 AB DC 的延长线相交于点 F .若 cos ABC = cos ADC = 3 5 CD = 5 CF = ED = n ,直接写出 AD 的长(用含 n 的式子表示)

如图,直线 y = 2 x + 4 与反比例函数 y = k x 的图象相交于 A ( - 3 , a ) B 两点

(1)求 k 的值;

(2)直线 y = m ( m > 0 ) 与直线 AB 相交于点 M ,与反比例函数的图象相交于点 N .若 MN = 4 ,求 m 的值;

(3)直接写出不等式 6 x - 5 > x 的解集.

解方程: 4 x - 3 = 2 ( x - 1 )

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号