游客
题文

如图,已知抛物线 y = a x 2 + bx + c ( a 0 ) 的对称轴为直线 x = - 1 ,且抛物线经过 A ( 1 , 0 ) C ( 0 , 3 ) 两点,与 x 轴交于点 B

(1)若直线 y = mx + n 经过 B C 两点,求直线 BC 和抛物线的解析式;

(2)在抛物线的对称轴 x = - 1 上找一点 M ,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出点 M 的坐标;

(3)设点 P 为抛物线的对称轴 x = - 1 上的一个动点,求使 ΔBPC 为直角三角形的点 P 的坐标.

科目 数学   题型 计算题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 轴对称-最短路线问题 二次函数综合题
登录免费查看答案和解析
相关试题

计算或化简:(1)(2)

(每题4分,共12分)
计算下列各题:
(1)
(2)
(3)

解不等式:

(本题7分)化简并求值:2(2a-3b)-(3a+2b+1),其中a=2,b=-.

(本题7分)解方程:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号