某超市销售樱桃,已知樱桃的进价为15元 千克,如果售价为20元 千克,那么每天可售出250千克,如果售价为25元 千克,那么每天可获利2000元,经调查发现:每天的销售量 (千克)与售价 (元 千克)之间存在一次函数关系.
(1)求 与 之间的函数关系式;
(2)若樱桃的售价不得高于28元 千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?
如图,在Rt△ABC中,∠ACB=90°,AC=BC,以AC为直径作QO,OB交QO于E,AE的延长线交BC于D,连结CE.
(1)求证△BED~△BCE.
(2)若AC=4,求CD的长.
甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示. 游戏规定,转动两个转盘停止后,指针必须指到某一数字,否则重转。
(1)请用树状图或列表法列出所有可能的结果;
(2)若指针所指的两个数字都是方程x2-4x+3=0的解时,则甲获胜;若指针所指的两个数字都不是方程x2-4x+3=0的解时,则乙获胜.问他们两人谁获胜的概率大?请分析说明。
(本题7分)(1)如图,⊿ABC的三个顶点坐标
分别为A(-1, 1)、B(-2,3)、C(-1,3),
(1) 将⊿ABC沿x轴正方向平移2个单位得到⊿A1B1C1,
请在网格中画出
(2)⊿A1B1C1绕点(0,1)顺时针旋转90°得到⊿A2B2C2,
则直线A2B2的解析式是.
已知,如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.
求证:BC="EF."
先化简,再求值:,其中