如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
:自带白开水; :瓶装矿泉水; :碳酸饮料; :非碳酸饮料.
根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:
(1)这个班级有多少名同学?并补全条形统计图.
(2)若该班同学每人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?
饮品名称 |
自带白开水 |
瓶装矿泉水 |
碳酸饮料 |
非碳酸饮料 |
平均价格(元 瓶) |
0 |
2 |
3 |
4 |
(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?
(4)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.
如图,△ABC中,∠C=Rt∠,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
如左图:直线y=kx+4k(k≠0)交x轴于点A,交y轴于点C,点M(2,m)为直线AC上一点,过点M的直线BD交x轴于点B,交y轴于点D.
(1)求的值(用含有k的式子表示.);
(2)若S△BOM=3S△DOM,且k为方程(k+7)(k+5)﹣(k+6)(k+5)=的根,求直线BD的解析式.
(3)如右图,在(2)的条件下,P为线段OD之间的动点(点P不与点O和点D重合),OE上AP于E,DF上AP于F,下列两个结论:①值不变;②
值不变,请你判断其中哪一个结论是正确的,并说明理由并求出其值.
.
如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=
x+6上一个动点.
(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;
(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;
(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.
已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(4,0),B(0,﹣4),P为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限.
(1)求直线AB的解析式;
(2)用m的代数式表示点M的坐标;
(3)若直线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,写出你的结论并说明理由.
如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).
(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;
(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;
(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.