如图,在平面直角坐标系中,直线 与 轴、 轴分别交于点 , ,高为3的等边三角形 ,边 在 轴上,将此三角形沿着 轴的正方向平移,在平移过程中,得到△ ,当点 与原点重合时,解答下列问题:
(1)求出点 的坐标,并判断点 是否在直线 上;
(2)求出边 所在直线的解析式;
(3)在坐标平面内找一点 ,使得以 、 、 、 为顶点的四边形是平行四边形,请直接写出 点坐标.
如图,河流两岸a,b互相平行,C,D是河岸a上间隔50米的两个电线杆.小英在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100米到达B处,测得∠CBM=60°,求河流的宽度.
随着本区近几年城市建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量
成正比例关系,如图(1)所示;种植花卉的利润
与投资量
成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元)
如图:AD//EG//BC,EG分别交AB、DB、AC于点E、F、G,已知AD=6,BC=10,AE=3,AB=5,求EG、FG的长
已知二次函数的图像经过A(-1,-6)、B(2,-3),求这个函数的解析式及这个函数图像的顶点坐标
如图,已知与
都是等边三角形,点
在边
上(不与
、
重合),
与
相交于点
.
(1)求证:∽
;
(2)若,设
,
;
①求关于
的函数解析式及定义域;
②当为何值时,
?