如图, 中, 为钝角, ,点 是边 延长线上一点,以点 为顶点, 为边,在射线 下方作 .
(1)在射线 上取点 ,连接 交线段 于点 .
①如图1,若 ,请直接写出线段 与 的数量关系和位置关系;
②如图2,若 ,判断线段 与 的数量关系和位置关系,并说明理由;
(2)如图3,反向延长射线 ,交射线 于点 ,将 沿 方向平移,使顶点 落在点 处,记平移后的 为 ,将 绕点 顺时针旋转角 , 交线段 于点 , 交射线 于点 ,请直接写出线段 , 与 之间的数量关系.
山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
如图,△ABC中,AB=BC,AD⊥BC于点D,DE∥AB交AC于点E,过点C在△ABC外部作CF∥AB,AF⊥CF于点F.连接EF.
(1)求证:△AFC≌△ADC;
(2)判断四边形DCFE的形状,并说明理由.
如图,的图象与反比例函数
的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).
(1)求这两个函数的表达式;
(2)请直接写出当x取何值时,y1>y2.
如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.
先化简代数式÷(x+2﹣
);再从方程y2﹣3y+2=0的根中选择一个合适的作为x的值,求出原代数式的值.