游客
题文

如图, ABCD 的对角线 AC BD 相交于点 O EF 过点 O 且与 AB CD 分别相交于点 E F ,连接 EC

(1)求证: OE = OF

(2)若 EF AC ΔBEC 的周长是10,求 ABCD 的周长.

科目 数学   题型 解答题   难度 中等
知识点: 平行四边形的性质 全等三角形的判定与性质 线段垂直平分线的性质
登录免费查看答案和解析
相关试题

如图,已知AB是⊙O的弦,点C在线段AB上,OC=AC=4,CB=8.
求⊙O的半径.

如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止).

(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD="x,BE=y," 请你写出之间的函数关系式及其定义域.
(2)请你进一步研究如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?
问题②:在△DEF的移动过程中,是否存在某个位置,使得?如果存在,求出AD的长度;如果不存在,请说明理由.
问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?

如图,已知抛物线轴相交于A、B两点,与轴相交于点C,若已知B点的坐标为B(8,0).

(1)求抛物线的解析式及其对称轴方程;
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;
(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥轴,求MN的最大值;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

如图E为正方形ABCD边BC延长线上一点,AE交DC于F,FG∥BE交DE于G

(1)求证:FG=FC;
(2)若FG=1,AD=3,求tan∠GFE的值.

通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化. 类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad). 如下图在△ABC中,AB=AC,顶角A的正对记作sadA,这时. 我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:

(1)sad60º=_____________;sad90º=________________。
(2)对于的正对值sadA的取值范围是_____________。
(3)试求sad36º的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号