游客
题文

如图,在 ΔABC 中, BC > AC ,点 E BC 上, CE = CA ,点 D AB 上,连接 DE ACB + ADE = 180 ° ,作 CH AB ,垂足为 H

(1)如图 a ,当 ACB = 90 ° 时,连接 CD ,过点 C CF CD BA 的延长线于点 F

①求证: FA = DE

②请猜想三条线段 DE AD CH 之间的数量关系,直接写出结论;

(2)如图 b ,当 ACB = 120 ° 时,三条线段 DE AD CH 之间存在怎样的数量关系?请证明你的结论.

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形 全等三角形的判定与性质 三角形综合题
登录免费查看答案和解析
相关试题

如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.

如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,
按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.

(1)当t为何值时,CP把△ABC的周长分成相等的两部分?
(2)当t为何值时,CP把△ABC的面积分成相等的两部分?
(3)当t为何值时,△BCP为等腰三角形?

小明是一名升旗手,面对高高的旗杆,他想出了好几种方法测量方法,学过直角三角形后,他只用一把卷尺就测出了旗杆AB的高度.下面是他测量的过程和数据:
第一步:测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1m(如图1),
第二步:拉着绳子的下端往后退,当他将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1m,到旗杆的距离CE为8m,(如图2).他很快算出了旗杆的高度,请你也来试一试.

如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠DEC=90°

(1)△CDE是什么三角形?请说明理由
(2)若AD=6,AB=14,请求出BC的长.

如图所示,BC⊥ED,垂足为O,∠A=27°,∠D=20°,求∠ACB与∠B的度数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号