游客
题文

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + 3 (其中 a b 为常数, a 0 ) 经过点 A ( 1 , 0 ) 和点 B ( 3 , 0 ) ,且与 y 轴交于点 C ,点 D 为对称轴与直线 BC 的交点.

(1)求该抛物线的表达式;

(2)抛物线上存在点 P ,使得 ΔDPB ΔACB ,求点 P 的坐标;

(3)若点 Q 为点 O 关于直线 BC 的对称点,点 M 为直线 BC 上一点,点 N 为坐标平面内一点,是否存在这样的点 M 和点 N ,使得以 Q B M N 为顶点的四边形是菱形?若存在,请直接写出点 N 的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

岳阳市的房价由前年的每平方米1800元涨到今年每平方米2592元,求市的房价平均每年涨价百分之几?

如图,已知,求线段的长.

已知3是一元二次方程的一个根,求方程的另一个根及值.

已知:如图,抛物线轴交于点、点,与直线相交于点、点,直线轴交于点

(1)求直线的解析式;
(2)求的面积;
(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

把两个全等的直角三角板ABC和EFG叠放在一起,且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF的长均为4。
(1)当EG⊥AC于点K,GF⊥BC于点H时,如图23-1,求GH:GK的值.
(2)现将三角板EFG由图23-1所示的位置绕O点沿逆时针方向旋转,旋转角满足条件:
0°<<30°,如图23-2,EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你的结论.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号