如图,抛物线 经过点 和点 ,且与 轴相交于点 .点 是线段 上的一个动点(不与点 , 重合),设点 的横坐标为 ,过点 作 轴交抛物线于点 ,点 在 的延长线上,且 ,过点 作 直线 ,垂足为点 .
(1)求此抛物线的解析式和点 的坐标;
(2)设 的周长为 ,求 关于 的函数关系式;
(3)直线 经过点 ,且直线 轴,点 是直线 上任意一点,过点 分别作 直线 , 轴,垂足分别为点 , ,若以三点 , , 为顶点的三角形是等腰三角形,请直接写出点 的坐标.
化简:.
已知二次函数(a>0)的图象与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程
的两根.
(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函数的解析式.
如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.
(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.
如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
(1)求证:BC平分∠PDB;
(2)求证:BC2=AB•BD;
(3)若PA=6,PC=6,求BD的长.
某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.
x |
50 |
60 |
90 |
120 |
y |
40 |
38 |
32 |
26 |
(1)求y关于x的函数解析式;
(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.