游客
题文

正方形 ABCD 的边长为 6 cm ,点 E M 分别是线段 BD AD 上的动点,连接 AE 并延长,交边 BC F ,过 M MN AF ,垂足为 H ,交边 AB 于点 N

(1)如图1,若点 M 与点 D 重合,求证: AF = MN

(2)如图2,若点 M 从点 D 出发,以 1 cm / s 的速度沿 DA 向点 A 运动,同时点 E 从点 B 出发,以 2 cm / s 的速度沿 BD 向点 D 运动,运动时间为 ts

①设 BF = ycm ,求 y 关于 t 的函数表达式;

②当 BN = 2 AN 时,连接 FN ,求 FN 的长.

科目 数学   题型 解答题   难度 中等
知识点: 相似三角形的判定与性质 全等三角形的判定与性质 正方形的性质
登录免费查看答案和解析
相关试题

如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC,
求证:DM=DN.

图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点和点在小正方形的顶点上.

(1)在图1中画出,使为直角三角形(点在小正方形的顶点上,画出一个即可);
(2)在图2中画出,使为等腰三角形(点在小正方形的顶点上,画出一个即可).

在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。

(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明;
(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明。

如图,△ABC 中,BD、CE分别是AC、AB上的高,BD与CE交于点O,BE=CD。

(1)△ABC是等腰三角形吗?为什么?
(2)点O在∠A的平分线上吗?为什么?

如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD。求证:BE⊥AC

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号