如图1, 的边 在 轴的正半轴上, , ,反比例函数 的图象经过的 .
(1)求点 的坐标和反比例函数的关系式;
(2)如图2,直线 分别与 轴、 轴的正半轴交于 , 两点,若点 和点 关于直线 成轴对称,求线段 的长;
(3)如图3,将线段 延长交 的图象于点 ,过 , 的直线分别交 轴、 轴于 , 两点,请探究线段 与 的数量关系,并说明理由.
在版面设计过程中,将一个半圆面三等分,请你用尺规作出图形,要求保留作图痕迹.
先化简,后求值: ,其中x=-4.
如图,抛物线y=x2-mx+n与x轴交于A、B两点,与y轴交于点C(0,-1).且对称轴x=l.
(1)求出抛物线的解析式及A、B两点的坐标;
(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3?若存在,求出点D的坐标;若不存在.说明理由(使用图1);
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).
如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.
(1)求证:△AOM∽△DMN;
(2)求∠MBN的度数.
已知矩形OABC中,OA=3,AB=6,以OA、OC所在的直线为坐标轴,建立如图所示的平面直角坐标系.将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和x轴交于点P,与y轴交于点Q.
(1)求证:△BCQ≌△ODQ;
(2)求点P的坐标.