游客
题文

如图1,抛物线 y = a x 2 + bx + c 经过平行四边形 ABCD 的顶点 A ( 0 , 3 ) B ( 1 , 0 ) D ( 2 , 3 ) ,抛物线与 x 轴的另一交点为 E .经过点 E 的直线 l 将平行四边形 ABCD 分割为面积相等的两部分,与抛物线交于另一点 F .点 P 为直线 l 上方抛物线上一动点,设点 P 的横坐标为 t

(1)求抛物线的解析式;

(2)当 t 何值时, ΔPFE 的面积最大?并求最大值的立方根;

(3)是否存在点 P 使 ΔPAE 为直角三角形?若存在,求出 t 的值;若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.

(1)求证:DE=FE;
(2)若BC=9,AD=6,求BF的长.

认真观察图1的4个图中阴影部分构成的图案,回答下列问题:

(1)请写出这四个图案都具有的两个共同特征.
特征1:;特征2:
(2)请在图2中设计出你心中的图案,使它也具备你所写出的上述两个特征.

2013年3月1日,张老师就本班学生对心理健康知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:

(1)求该班共有多少名学生;
(2)在条形统计图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数.

某地区冬季干旱,康平社区每天需从外地调运饮用水60吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到供水点,甲厂每天最多可调出40吨,乙厂每天最多可调出45吨.从两水厂运水到康平社区供水点的路程和运费如下表:


到康平社区供水点的路程(千米)
运费(元/吨·千米)
甲厂
20
4
乙厂
14
5

(1)若某天调运水的总运费为4450元,则从甲、乙两水厂各调运了多少吨饮用水?
(2)设从甲厂调运饮用水x吨,总运费为W元,试写出W关于x的函数关系式,并确定x的取值范围.怎样安排调运方案才能使每天的总运费最省?

如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=

(1)求AE的长;(2)求ΔCEF的周长和面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号