游客
题文

我们知道,任意一个正整数 n 都可以进行这样的分解: n = p × q ( p q 是正整数,且 p q ) ,在 n 的所有这种分解中,如果 p q 两因数之差的绝对值最小,我们就称 p × q n 的最佳分解.并规定: F ( n ) = p q

例如12可以分解成 1 × 12 2 × 6 3 × 4 ,因为 12 1 > 6 2 > 4 3 ,所以 3 × 4 是12的最佳分解,所以 F ( 12 ) = 3 4

(1)如果一个正整数 m 是另外一个正整数 n 的平方,我们称正整数 m 是完全平方数.

求证:对任意一个完全平方数 m ,总有 F ( m ) = 1

(2)如果一个两位正整数 t t = 10 x + y ( 1 x y 9 x y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数 t 为“吉祥数”,求所有“吉祥数”;

(3)在(2)所得“吉祥数”中,求 F ( t ) 的最大值.

科目 数学   题型 解答题   难度 中等
知识点: 因式分解的应用
登录免费查看答案和解析
相关试题

现有一个种植总面积为540m2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:


占地面积(m/垄)
产量(千克/垄)
利润(元/千克)
西红柿
30
160
1.1
草莓
15
50
1.6

(1)若设草莓共种植了垄,通过计算说明共有几种种植方案?分别是哪几种?
(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?

如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A(0,2),B(4,2)C
(6,0),解答下列问题:
(1)请在图中确定该圆弧所在圆心D点的位置,则D点坐标为________ ;
(2)连结AD,CD,求⊙D的半径(结果保留根号);
(3)求扇形DAC的面积. (结果保留π)

初中生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:

(1)此次抽样调查中,共调查了名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计该区近20000名初中生中大
约有多少名学生学习态度达标(达标包括A级和B级)?

如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是
30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪
的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m)

如图,已知平行四边形ABCD中,点边的中点,延长相交于点
求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号