如图1,抛物线 过 、 两点,交 轴于点 ,过点 作 轴的平行线与抛物线上的另一个交点为 ,连接 、 .点 是该抛物线上一动点,设点 的横坐标为 .
(1)求该抛物线的表达式和 的正切值;
(2)如图2,若 ,求 的值;
(3)如图3,过点 、 的直线与 轴于点 ,过点 作 ,垂足为 ,直线 与 轴交于点 ,试判断四边形 的形状,并说明理由.
小明解方程﹣
=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.
(1)计算:|-5|+x2-1;
(2)化简:a(2-a)+(a+1)(a-1).
如图,在每一个四边形ABCD中,均有AD//BC,CD⊥BC∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________;
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时
cos∠BPC的值;若不存在,请说明理由。
在平面直角坐标系中,抛物线y=x+5x+4的顶点为M,与x轴交于A、B两点与y轴交于C点。
(1)求点A、B、C的坐标;
(2)求抛物线y=x+5x+4关于坐标原点O对称的抛物线的函数表达式;
(3)设(2)中所求抛物线的顶点为,与x轴交于
、
两点,与y轴交于
点,在以A、B、C、M、
、
、
、、这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积。
如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E。
(1)求证:∠BAD=∠E;
(2)若⊙O的半径为5,AC=8,求BE的长。