游客
题文

将矩形 ABCD 绕点 A 顺时针旋转 α ( 0 ° < α < 360 ° ) ,得到矩形 AEFG

(1)如图,当点 E BD 上时.求证: FD = CD

(2)当 α 为何值时, GC = GB ?画出图形,并说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 旋转的性质 矩形的性质 全等三角形的判定与性质
登录免费查看答案和解析
相关试题

解方程
(1)x2x+=0
(2)3(x+1)2-5(x+1)-2=0

如图,二次函数与x轴交于A﹑B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动。设PQ交直线AC于点G.

(1)求直线AC的解析式;
(2)设△PQC的面积为S,求S关于t的函数解析式;
(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形。直接写出所有满足条件的M点的坐标;
(4)过点P作PE⊥AC,垂足为E,当点P运动时,线段EG的长度是否发生改变,请说明理由。

△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连CF
(1)如图,当D点在BC上时,试探索BE与CF的关系,并证明。

(2)如图,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明;如果不成立,请写出相应的正确的结论并加以证明。

如图,已知在平面直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向做匀速运动,同时点P从点A出发以每秒1个单位长度沿A→B→C→D的路线做匀速运动.当点P运动到点D时停止运动,矩形ABCD也随之停止运动.

(1)求点P从点A运动到点D所需的时间.
(2)设点P运动时间为t(s),①当t=5时,求出点P的坐标.②若△OAP的面积为S,试求出S与t之间的函数关系式,并写出相应的自变量t的取值范围.

如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分.

(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号