如图1,在矩形 ABCD 中, BC > AB , ∠ BAD 的平分线 AF 与 BD 、 BC 分别交于点 E 、 F ,点 O 是 BD 的中点,直线 OK / / AF ,交 AD 于点 K ,交 BC 于点 G .
(1)求证:① ΔDOK ≅ ΔBOG ;② AB + AK = BG ;
(2)若 KD = KG , BC = 4 - 2 .
①求 KD 的长度;
②如图2,点 P 是线段 KD 上的动点(不与点 D 、 K 重合), PM / / DG 交 KG 于点 M , PN / / KG 交 DG 于点 N ,设 PD = m ,当 S ΔPMN = 2 4 时,求 m 的值.
计算:
(1) ( x + y ) 2 + y ( 3 x ﹣ y ) ;
(2) ( 4 - a 2 a - 1 + a ) ÷ a 2 - 16 a - 1 ;
先化简,再求值: 3 a a - 2 - a a + 2 ÷ 2 a a 2 - 4 ,其中 a =﹣ 1 2 .
解不等式组: 2 ( x + 1 ) > 3 x - 1 ① 2 x - 1 2 > x + 1 3 ②
计算: 2 × 6 - ( 3 + 1 ) 2
若一次函数 y = - 3 x - 3 的图象与 x 轴, y 轴分别交于 A , C 两点,点 B 的坐标为 ( 3 , 0 ) ,二次函数 y = a x 2 + bx + c 的图象过 A , B , C 三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点 C 作 CD / / x 轴交抛物线于点 D ,点 E 在抛物线上 ( y 轴左侧),若 BC 恰好平分 ∠ DBE .求直线 BE 的表达式;
(3)如图(2),若点 P 在抛物线上(点 P 在 y 轴右侧),连接 AP 交 BC 于点 F ,连接 BP , S ΔBFP = m S ΔBAF .
①当 m = 1 2 时,求点 P 的坐标;
②求 m 的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号