某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书 套,乙种图书 套,请解答下列问题:
(1)请求出 与 的函数关系式(不需要写出自变量的取值范围);
(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?
(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调 为正整数)元,丙种图书的售价下调 元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及 的值.
如图,△ABC中,AB=5,BC=11,,点P是BC边上的一个动点,联结AP,取AP的中点M,将线段MP绕点P顺时针旋转90°得到线段PN,联结AN,NC.
(1)当点N恰好落在BC边上时,求NC的长;
(2)若点N在△ABC内部(不含边界),设BP=x,CN=y,求y关于x的函数关系式,并求出函数的定义域;
(3)若△PNC是等腰三角形,求BP的长.
如图,直线与x轴、y轴分别交于点A、C,经过A、C两点的抛物线
与x轴的负半轴上另一交点为B,且tan∠CBO=3.
(1)求该抛物线的解析式及抛物线的顶点D的坐标;
(2)若点P是射线BD上一点,且以点P、A、B为顶点的三角形与△ABC相似,求点P的坐标.
在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面积.
已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且.
(1)求证:△CED∽△ACD;
(2)求证:.
某商场为了方便顾客使用购物车,将滚动电梯由坡角30°的坡面改为坡度为1:2.4的坡面.如图,BD表示水平面,AD表示电梯的铅直高度,如果改动后电梯的坡面AC长为13米,求改动后电梯水平宽度增加部分BC的长(结果保留根号).