游客
题文

已知直线 y = 1 2 x + 2 分别交 x 轴、 y 轴于 A B 两点,抛物线 y = 1 2 x 2 + mx 2 经过点 A ,和 x 轴的另一个交点为 C

(1)求抛物线的解析式;

(2)如图1,点 D 是抛物线上的动点,且在第三象限,求 ΔABD 面积的最大值;

(3)如图2,经过点 M ( 4 , 1 ) 的直线交抛物线于点 P Q ,连接 CP CQ 分别交 y 轴于点 E F ,求 OE · OF 的值.

备注:抛物线顶点坐标公式 ( b 2 a 4 ac b 2 4 a )

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

先化简,再求值:,其中

如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).

(1)求抛物线的解析式;
(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)

如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)求证:CD2=CA•CB;
(2)求证:CD是⊙O的切线;
(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.

如图,已知函数与反比例函数(x>0)的图象交于点A.将的图象向下平移6个单位后与双曲线交于点B,与x轴交于点C.

(1)求点C的坐标;
(2)若,求反比例函数的解析式.

如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.

(1)求点B到AD的距离;
(2)求塔高CD(结果用根号表示).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号