小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程 (米 与小强所用时间 (分钟)之间的函数图象如图所示.
(1)求函数图象中 的值;
(2)求小强的速度;
(3)求线段 的函数解析式,并写出自变量的取值范围.
一艘轮船自南向北航行,在A处测得北偏西21.3º方向有一座小岛C,继续向北航行60海里到达B处,测得小岛C此时在轮船的北偏西63.5º方向上.之后,轮船继续向北航行多少海里,距离小岛C最近?(参考数据:sin21.3º≈,tan21.3º≈
,sin63.5º≈
,tan63.5º≈2)
一次期中考试中,甲、乙、丙、丁、戊五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)
甲 |
乙 |
丙 |
丁 |
戊 |
平均分 |
标准差 |
|
数学 |
71 |
72 |
69 |
68 |
70 |
![]() |
|
英语 |
88 |
82 |
94 |
85 |
76 |
85 |
(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(直接填入表格)
(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,
标准分的计算公式:标准分=(个人成绩-平均成绩)÷成绩标准差.
从标准分看,标准分大的考试成绩更好,请问甲同学在本次考试中,数学与英语哪个学科考得更好?
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.
(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90º,且四边形AECF是菱形,求BE的长.
解方程:①4x2-4x+1=0②x2+2=4x
如图,抛物线(b,c是常数,且c<0)与
轴分别交于点A、B(点A位于点B的左侧),与
轴的负半轴交于点C,点A的坐标为(-1,0).
(1)请直接写出点OA的长度;
(2)若常数b,c满足关系式:.求抛物线的解析式.
(3)在(2)的条件下,点P是轴下方抛物线上的动点,连接PB、PC.设△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有多少个(直接写出结果)?