游客
题文

如图1,在平面直角坐标系 xOy 中,抛物线 C : y = a x 2 + bx + c x 轴相交于 A B 两点,顶点为 D ( 0 , 4 ) AB = 4 2 ,设点 F ( m , 0 ) x 轴的正半轴上一点,将抛物线 C 绕点 F 旋转 180 ° ,得到新的抛物线 C '

(1)求抛物线 C 的函数表达式;

(2)若抛物线 C ' 与抛物线 C y 轴的右侧有两个不同的公共点,求 m 的取值范围.

(3)如图2, P 是第一象限内抛物线 C 上一点,它到两坐标轴的距离相等,点 P 在抛物线 C ' 上的对应点 P ' ,设 M C 上的动点, N C ' 上的动点,试探究四边形 PMP ' N 能否成为正方形?若能,求出 m 的值;若不能,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 二次函数图象与几何变换 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

已知:如图,,当为多少时,图中的两个三角形相似.

某校初三年级“数学兴趣小组”实地测量操场旗杆的高度.旗杆的影子落在操场和操场边的土坡上,如图所示,测得在操场上的影长BC="20" m,斜坡上的影长CD=2m,已知斜坡CD与操场平面的夹角为45°,同时测得身高l.65m的学生在操场 上的影长为3.3 m.求旗杆AB的高度。(结果精确到1m)
(提示:同一时刻物高与影长成正比.参考数据:≈1.414.≈1.732.≈2.236)

阅读下面短文:如图1,△ABC是直角三角形,∠C=90°,现将△ABC补成长方形,使△ABC的两个顶点为长方形一边的两个端点,第三个顶点落在长方形这一边的对边上,那么符合要求的长方形可以画出两个:长方形ACBD和长方形AEFB(如图2)。

解答问题:
(1)设图2中长方形ACBD和长方形AEFB的面积分别为S1,S2,则S1 S2(填“>”、“=”或“<”)
(2)如图3,△ABC是钝角三角形,按短文中的要求把它补成长方形,那么符合要求的长方形可以画出 个,利用图3把它画出来。
(3)如图4,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成长方形,那么符合要求的长方形可以画出 个,利用图4把它画出来。
(4)在(3)中所画出的长方形中,哪一个的周长最小?为什么?

在正方形ABCD中,点E在BC边所在直线上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB。
证明:△BGF是等腰直角三角形。

如图,矩形ABCD的BC边在直线l上,AD=5,AB=3, P为直线l上的点,且△AEP是腰长为5的等腰三角形,则BP=

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号